Spectra of some partitioned matrices

M. Gayathri

Assistant Professor
Department of Mathematics
Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu.

November 19, 2021

Thesis Title

Spectra of graphs constructed by various new graph operations
New graph operations in my thesis

- $\left(H_{1}, H_{2}\right)$-merged subdivision graph of a graph
- \mathcal{M}-join of graphs
- M-generalized corona of graphs constrained by vertex subsets
- (M, \mathcal{M})-corona-join of graphs constrained by vertex subsets

Notations

- $J_{n \times m}$ - The $n \times m$ matrix in which all the entries are 1
- $\sigma(M)$ - The spectrum of a matrix M
- $\mathcal{R}_{n \times m}(s):=\left\{\left[m_{i j}\right] \in M_{n \times m}(\mathbb{C}) \mid \sum_{j=1}^{m} m_{i j}=s\right.$ for $\left.i=1,2, \ldots, n\right\}$
- $\mathcal{C}_{n \times m}(c):=\left\{\left[m_{i j}\right] \in M_{n \times m}(\mathbb{C}) \mid \sum_{i=1}^{n} m_{i j}=c\right.$ for $\left.j=1,2, \ldots, m\right\}$
- $\mathcal{R} \mathcal{C}_{n \times m}(s, c):=\mathcal{R}_{n \times m}(s) \cap \mathcal{C}_{n \times m}(c)$.
- $A \cup B, A \cap B, A+B$ denote the union, intersection, sum of sets (multi-sets) A and B
- $k A$ Sum of a multi-set A with itself k times
- $A \subseteq B A$ is a subset (multi-subset) of B
- $A \backslash B$ The difference of a set (multi-set) A from B
- $|A|$ Cardinality of the set (multi-set) A

Related results in literature

The following result was proved by Goddard in 1995.

Proposition 1.1.

([1]) Let $A \in M_{n \times n}(\mathbb{C})$ and $B \in M_{m \times m}(\mathbb{C})$. If there exists a matrix $P \in M_{n \times m}(\mathbb{C})$ such that $\operatorname{rank}(P)=r$ and $A P=P B$, then A and B have at least r common eigenvalues. Moreover, if $m \geq n$ and $r=n$, then $\sigma(B) \supseteq \sigma(A)$; if $m \leq n$ and $r=m$, then $\sigma(B) \subseteq \sigma(A)$.

Haynsworth proved the following result in 1960.

Theorem 1.1.

([3, Theorem 2]) Let

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \tag{1.1}\\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right] \text { and } B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 k} \\
B_{21} & B_{22} & \cdots & B_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
B_{k 1} & B_{k 2} & \cdots & B_{k k}
\end{array}\right] \text {, }
$$

where $A_{i j} \in M_{n_{i} \times n_{j}}(\mathbb{C})$ and $B_{i j} \in M_{m_{i} \times m_{j}}(\mathbb{C})$ for $i, j=1,2, \ldots, k$. Let $X_{j} \in M_{n_{j} \times m_{j}}(\mathbb{C})$ such that $\operatorname{rank}\left(X_{j}\right)=r$ for $j=1,2, \ldots, k$. If $A_{i j} X_{j}=X_{i} B_{i j}$ for $i, j=1,2, \ldots, k$, then A and B have at least $k r$ common eigenvalues. Moreover, if $r=m_{i}$ for $i=1,2, \ldots, k$, then $\sigma(B) \subseteq \sigma(A)$.

Throughout this presentation, unless we mentioned otherwise, we assume the following.
(1) $A=\left[\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 k} \\ A_{21} & A_{22} & \cdots & A_{2 k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k 1} & A_{k 2} & \cdots & A_{k k}\end{array}\right]$, where $A_{i j} \in M_{n_{i} \times n_{j}}(\mathbb{C})$ for $i, j=1,2, \ldots, k$;
(2) $\beta=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\} \subseteq\{1,2, \ldots, k\}$ and $s_{1}<s_{2}<\cdots<s_{t}$;
(3) $B=\left[\begin{array}{cccc}B_{s_{1} s_{1}} & B_{s_{1} s_{2}} & \cdots & B_{s_{1} s_{t}} \\ B_{s_{2} s_{1}} & B_{s_{2} s_{2}} & \cdots & B_{s_{2} s_{t}} \\ \vdots & \vdots & \ddots & \vdots \\ B_{s_{t} s_{1}} & B_{s_{t} s_{2}} & \cdots & B_{s_{t} s_{t}}\end{array}\right]$, where $B_{i j} \in M_{m_{i} \times m_{j}}(\mathbb{C})$ for $i, j \in \beta$.

Theorem 1.2.

Let $X_{j} \in M_{n_{j} \times m_{j}}(\mathbb{C})$ for $j \in \beta$, and let $r=\sum_{j=s_{1}}^{s_{t}} \operatorname{rank}\left(X_{j}\right)$. If

$$
A_{i j} X_{j}= \begin{cases}X_{i} B_{i j} & \text { for } i, j \in \beta \tag{1.2}\\ \mathbf{0} & \text { for } i \in \beta^{c} ; j \in \beta\end{cases}
$$

then A and B have at least r common eigenvalues. Moreover, if $\operatorname{rank}\left(X_{i}\right)=m_{i}$ (provided $m_{i} \leq n_{i}$) for $i \in \beta$, then $\sigma(B) \subseteq \sigma(A)$.

proof outline

Take

$$
P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \ldots & P_{1 t} \\
P_{21} & P_{22} & \ldots & P_{2 t} \\
\vdots & \vdots & \ddots & \vdots \\
P_{k 1} & P_{k 2} & \ldots & P_{k t}
\end{array}\right],
$$

where $P_{i j}= \begin{cases}X_{j} & \text { if } i=s_{j} ; \\ 0 & \text { otherwise },\end{cases}$
for $i=1,2, \ldots, k ; j=1,2, \ldots, t$. in Proposition 1.1.

Theorem 1.3.

If there exists a sequence $S=\left(X_{s_{1}}, X_{s_{2}}, \ldots, X_{s_{t}}\right)$ of non-zero vectors $X_{j} \in \mathbb{C}^{n_{j}}$ such that

$$
A_{i j} X_{j}= \begin{cases}a_{i j} X_{i} & \text { for } i, j \in \beta \tag{1.3}\\ 0 & \text { for } i \in \beta^{c} ; j \in \beta\end{cases}
$$

with $a_{i j} \in \mathbb{C}$ for $i, j \in \beta$, then $\sigma(A) \supseteq \sigma\left(E_{S}\right)$, where

$$
E_{S}=\left[\begin{array}{cccc}
a_{s_{1} s_{1}} & a_{s_{1} s_{2}} & \cdots & a_{s_{1} s_{t}} \\
a_{s_{2}} s_{1} & a_{s_{2} s_{2}} & \cdots & a_{s_{2} s_{t}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s_{t} s_{1}} & a_{s_{t} s_{2}} & \cdots & a_{s_{t} s_{t}}
\end{array}\right] .
$$

Remark 1.1.

(1) Each X_{j} is an eigenvector of $A_{j j}$ corresponding to the eigenvalue $a_{j j}$ for $j \in \beta$.
(2) The matrix E_{S} mentioned in Theorem 1.3 depends on the sequence S. In this case, we say that E_{S} is the matrix corresponding to the sequence S.

Next we study under which constraints the sum of the spectra of the matrices corresponding to some sequences is contained in the spectrum of A.

Proposition 1.2.

Let $s_{i}, t_{j} \in\{1,2, \ldots, k\}$ for $i=1,2, \ldots, r$ and $j=1,2, \ldots, p$. Let $X_{h}^{(q)} \in \mathbb{C}^{n_{h}}$ for $h=1,2, \ldots, k ; q=1,2$, and let $S_{1}=\left(X_{s_{1}}^{(1)}, X_{s_{2}}^{(1)}, \ldots, X_{s_{r}}^{(1)}\right)$ and
$S_{2}=\left(X_{t_{1}}^{(2)}, X_{t_{2}}^{(2)}, \ldots, X_{t_{p}}^{(2)}\right)$ be sequences of no-zero vectors, which satisfy (1.3) with $a_{i j}^{(1)}$, $a_{i j}^{(2)} \in \mathbb{C}$, respectively. If $X_{s_{i}}^{(1)}$ and $X_{t_{j}}^{(2)}$ are linearly independent whenever $s_{i}=t_{j}$ for
$i=1,2, \ldots, r$ and $j=1,2, \ldots, p$, then

$$
\sigma(A) \supseteq \sigma\left(E_{S_{1}}\right)+\sigma\left(E_{S_{2}}\right)
$$

Moreover, if $S_{1}, S_{2}, \ldots, S_{q}$ are the sequences of non-zero vectors such that each pair S_{i}, S_{j} for $i, j=1,2, \ldots, q$ satisfies the above constraints, then

$$
\sigma(A) \supseteq \sum_{i=1}^{q} \sigma\left(E_{S_{i}}\right)
$$

Proof outline

Let $P_{S_{1}}=\left[\begin{array}{llll}Y_{i 1}^{T} & Y_{i 2}^{T} & \cdots & Y_{i k}^{T}\end{array}\right]^{T}$, where

$$
Y_{i j}= \begin{cases}X_{i}^{(1)} & \text { if } j=s_{i} ; \\ 0 & \text { otherwise },\end{cases}
$$

for $j=1,2, \ldots, k ; i=1,2, \ldots, r$.
Let $P_{S_{2}}=\left[\begin{array}{llll}Z_{i 1}^{T} & Z_{i 2}^{T} & \cdots & Z_{i k}^{T}\end{array}\right]^{T}$, where

$$
Z_{i j}= \begin{cases}x_{i}^{(2)} & \text { if } j=t_{i} ; \\ 0 & \text { otherwise }\end{cases}
$$

for $j=1,2, \ldots, k ; i=1,2, \ldots, p$.
Then $\operatorname{rank}(Q)=r+p$, where $Q=\left[\begin{array}{ll}P_{S_{1}} & P_{S_{2}}\end{array}\right]$ and

$$
A Q=Q\left[\begin{array}{cc}
E_{S_{1}} & \mathbf{0} \\
\mathbf{0} & E_{S_{2}}
\end{array}\right] .
$$

Corollary 1.1.

Let $A_{i j}$ be a square matrix of order n for $i, j \in \beta$. Let $X^{(1)}, X^{(2)}, \ldots, X^{(r)}$ be linearly independent eigenvectors of $A_{i j}$ corresponding to the eigenvalues $a_{i j}^{(1)}, a_{i j}^{(2)}, \ldots, a_{i j}^{(r)}$, respectively for $i, j \in \beta$. Then we have the following.
(1) If $A_{i j} X^{(h)}=\mathbf{0}$ for $i \in \beta^{c} ; j \in \beta$, then

$$
\sigma(A) \supseteq \sum_{h=1}^{r} \sigma\left(E_{h}\right)
$$

where

$$
E_{h}=\left[\begin{array}{cccc}
a_{s_{1} s_{1}}^{(h)} & a_{s_{1}}^{(h)} & \cdots & a_{s_{1} s_{2}}^{(h)} \\
a_{s_{2} s_{1}}^{(h)} & a_{s_{2} s_{2}}^{(h)} & \cdots & a_{s_{2} s_{t}}^{(h)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s_{t} s_{1}}^{(h)} & a_{s_{t} s_{2}}^{(h)} & \cdots & a_{s_{t} s_{t}}^{(h)}
\end{array}\right]
$$

for $h=1,2, \ldots, r$.
(2) If $A_{i j}=c_{i j} J_{n \times n}$, where $c_{i j} \in \mathbb{C}$ for $i \in \beta^{c} ; j \in \beta$ and $X^{(h)}$ is orthogonal to $J_{n \times 1}$ for $h=1,2, \ldots, r$, then $\sigma(A) \supseteq \sum_{h=1}^{r} \sigma\left(E_{h}\right)$, where E_{h} is as mentioned in part (1).

Proof.

(1) For $h=1,2, \ldots, r$, let $S_{h}=\left(X_{s_{1}}^{(h)}, X_{s_{2}}^{(h)}, \ldots, X_{s_{t}}^{(h)}\right)$, where $X_{s_{i}}^{(h)}=X^{(h)}$ for $i=1,2, \ldots, t$. Since each pair S_{i}, S_{j} satisfies the constraints of Proposition 1.2 for $i, j=1,2, \ldots, r ; i \neq j$, the result follows. Here we denote $E_{S_{h}}$ by E_{h}.
(2) Since $X^{(h)}$ is orthogonal to $J_{n \times 1}$ for each $h=1,2, \ldots, r, A_{i j} X^{(h)}=\mathbf{0}$ for $i \in \beta^{c} ; j \in \beta$. So, the result follows by using part (1) of this corollary.

Example 1 Consider the matrix $M=\left[\begin{array}{cccc}1 & 4 & 2 & 2 \\ -4 & 3 & 2 & 2 \\ 0 & 5 & -2 & 4 \\ -6 & 3 & 4 & -2\end{array}\right]$.
$M=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where
$A_{11}=\left[\begin{array}{cc}1 & 4 \\ -4 & 3\end{array}\right], A_{12}=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$,
$A_{21}=\left[\begin{array}{cc}0 & 5 \\ -6 & 3\end{array}\right]$ and $A_{22}=\left[\begin{array}{cc}-2 & 4 \\ 4 & -2\end{array}\right]$.
Here $X=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector of A_{22} corresponding to the eigenvalue
-6 , which is orthogonal to $J_{2 \times 1}$.
So, by using Corollary 1.1 (2), -6 is an eigenvalue of M.

Corollary 1.2.

([3, Corollary 2]) If $A_{i j}$ for $i, j=1,2, \ldots, k$ are real symmetric matrices of order n such that they commutes with each other, then

$$
\sigma(A)=\sum_{h=1}^{n} \sigma\left(E_{h}\right)
$$

where

$$
E_{h}=\left[\begin{array}{cccc}
a_{11}^{(h)} & a_{12}^{(h)} & \cdots & a_{1 k}^{(h)} \\
a_{21}^{(h)} & a_{22}^{(h)} & \cdots & a_{2 k}^{(h)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1}^{(h)} & a_{k 2}^{(h)} & \cdots & a_{k k}^{(h)}
\end{array}\right],
$$

with $a_{i j}^{(h)}$ is an eigenvalue of $A_{i j}$ corresponding to the same eigenvector X for each $i, j=1,2, \ldots, k ; h=1,2, \ldots, n$.

Partitioned matrices with generalized stochastic matrices as its blocks

- A matrix M is said to be generalized stochastic, if $M \in \mathcal{R}_{n \times m}(r)$ for some $r \in \mathbb{C}$.
- The matrix A is said to be block-stochastic matrix, if each $A_{i j} \in \mathcal{R}_{n_{i} \times n_{j}}\left(a_{i j}\right)$ for $i, j=1,2, \ldots, k$. We denote the matrix $\delta_{A}:=\left[a_{i j}\right]$ for $i, j=1,2, \ldots, k$

Corollary 1.3.

If $A_{i j} \in \mathcal{R}_{n_{i} \times n_{j}}\left(a_{i j}\right)$ for $i, j \in \beta$ and $A_{i j}=\mathcal{R}_{n_{i} \times n_{j}}(0)$ for $i \in \beta^{c}$ and $j \in \beta$, then $\sigma(A) \supseteq \sigma\left(\delta_{[A, \beta]}\right)$, where

$$
\delta_{[A, \beta]}=\left[\begin{array}{cccc}
a_{s_{1} s_{1}} & a_{s_{1} s_{2}} & \ldots & a_{s_{1} s_{t}} \\
a_{s_{2}} s_{1} & a_{s_{2} s_{2}} & \ldots & a_{s_{2} s_{t}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s_{t} s_{1}} & a_{s_{t} s_{2}} & \cdots & a_{s_{t} s_{t}}
\end{array}\right] .
$$

Proof.

Let $X_{i}=J_{n_{i} \times 1}$ for $i \in \beta$ and let $S=\left(X_{s_{1}}, X_{s_{2}}, \ldots, X_{s_{t}}\right)$. Then S, A and $a_{i j}$ satisfies (1.3). So the result follows from Theorem 1.3.

Example 2

Consider the matrix $M=\left[\begin{array}{cccc}1 & 4 & 1 & -1 \\ -4 & 3 & -2 & 2 \\ 0 & 5 & -2 & 5 \\ -6 & 3 & 4 & -1\end{array}\right]$.
We can partition M as $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$,
where $A_{11}=\left[\begin{array}{cc}1 & 4 \\ -4 & 3\end{array}\right], A_{12}=\left[\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right]$,
$A_{21}=\left[\begin{array}{cc}0 & 5 \\ -6 & 3\end{array}\right]$ and $A_{22}=\left[\begin{array}{cc}-2 & 5 \\ 4 & -1\end{array}\right]$.
Notice that $A_{12} \in \mathcal{R}_{2 \times 2}(0)$ and $A_{22}=\mathcal{R}_{2 \times 2}(3)$.
So, taking $\beta=\{2\}$ in Corollary 1.3, we can obtain that 3 is an eigenvalue of M.

The following result, which was proved by Haynsworth [2] in 1959.

Corollary 1.4.

([2, Theorem 2]) If A is block-stochastic with $A_{i j}=\left[a_{h q}^{(j)}\right], h=1,2, \ldots, n_{i}$; $q=1,2, \ldots, n_{j} ; i, j=1,2, \ldots, k$, then

$$
\sigma(A)=\sigma\left(\delta_{A}\right)+\sigma(C)
$$

where

$$
C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 k} \tag{1.4}\\
C_{21} & C_{22} & \cdots & C_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
C_{k 1} & C_{k 2} & \cdots & C_{k k}
\end{array}\right]
$$

with $C_{i j}=\left[a_{h q}^{(i j)}-a_{h 1}^{(i j)}\right]$ for $h=2,3, \ldots, n_{i} ; q=2,3, \ldots, n_{j} ; i, j=1,2, \ldots, k$. If either n_{i} or n_{j} is 1 , then the block $C_{i j}$ is omitted, so i and j do not necessarily take all values of $1,2, \ldots, k$.

Corollary 1.5.

Let $A_{i i}$ be a block-stochastic matrix for $i=1,2, \ldots, k$ and let

$$
A_{i j}=\left[\begin{array}{cccc}
\rho_{11}^{(i j)} J_{n_{i 1} \times n_{j 1}} & \rho_{12}^{(i j)} J_{n_{i 1} \times n_{j 2}} & \cdots & \rho_{1 p_{1}}^{(i j)} J_{n_{i 1} \times n_{j p_{j}}} \\
\rho_{21}^{(i j)} J_{n_{i 2} \times n_{j 1}} & \rho_{22}^{(i j)} J_{n_{i 2} \times n_{j 2}} & \cdots & \rho_{2 p_{j}}^{(i j} J_{n_{i 2} \times n_{j p_{j}}} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{p_{i} 1}^{(i j)} J_{n_{i_{i}} \times n_{j 1}} & \rho_{p_{i} 2}^{(i j)} J_{n_{i p_{i}} \times n_{j 2}} & \cdots & \rho_{p_{i} p_{j}}^{(i j)} J_{n_{i p_{i}} \times n_{j p_{j}}}
\end{array}\right],
$$

where $\rho_{h q}^{(i j)} \in \mathbb{C}$ for $h=1,2, \ldots, p_{i} ; q=1,2, \ldots, p_{j} ; i, j=1,2, \ldots, k ; i \neq j$. Then

$$
\sigma(A)=\sigma\left(\delta_{A}\right)+\sum_{i=1}^{k}\left[\sigma\left(A_{i i}\right) \backslash \sigma\left(\delta_{A_{i j}}\right)\right]
$$

Proof.

Since $A_{i i}$ is block stochastic, by Corollary 1.4,

$$
\begin{equation*}
\sigma\left(A_{i i}\right)=\sigma\left(\delta_{A_{i j}}\right)+\sigma\left(C^{(i)}\right) \tag{1.5}
\end{equation*}
$$

where $C^{(i)}$ can be obtained from (1.4) for $i=1,2, \ldots, k$.
From (1.5), we can obtain that

$$
\begin{equation*}
\sigma\left(C^{(i)}\right)=\sigma\left(A_{i i}\right) \backslash \sigma\left(\delta_{A_{i j}}\right) . \tag{1.6}
\end{equation*}
$$

Since A is block stochastic, again by using Corollary 1.4 , we obtain that

$$
\begin{equation*}
\sigma(A)=\sigma\left(\delta_{A}\right)+\sigma(C) \tag{1.7}
\end{equation*}
$$

where C is as given in (1.4) with

$$
C_{i j}= \begin{cases}C^{(i)} & \text { for } i=j \\ \mathbf{0} & \text { for } i \neq j\end{cases}
$$

for $i, j=1,2, \ldots, k$. So,

$$
\sigma(C)=\sum^{k} \sigma\left(C^{(i)}\right)=\sum^{k}\left[\sigma\left(A_{i j}\right) \backslash \sigma\left(\delta_{A_{i j}}\right)\right]
$$

Corollary 1.6.

Let $A_{i} \in \mathcal{R}_{n_{i} \times n_{i}}\left(a_{i}\right)$ for $i=1,2, \ldots, k$. Let

$$
A=\left[\begin{array}{cccc}
A_{1} & \rho_{12} J_{n_{1} \times n_{2}} & \cdots & \rho_{1 k} J_{n_{1} \times n_{k}} \\
\rho_{21} J_{n_{2} \times n_{1}} & A_{2} & \cdots & \rho_{2 k} J_{n_{2} \times n_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{k 1} J_{n_{k} \times n_{1}} & \rho_{k 2} J_{n_{k} \times n_{2}} & \cdots & A_{k}
\end{array}\right],
$$

where $\rho_{i j} \in \mathbb{C}$ for $i, j=1,2, \ldots, k ; i \neq j$. Then

$$
\sigma(A)=\sigma\left(\delta_{A}\right)+\sum_{i=1}^{k}\left[\sigma\left(A_{i}\right) \backslash\left\{a_{i}\right\}\right]
$$

where

$$
\delta_{A}=\left[\begin{array}{cccc}
a_{1} & \rho_{12} n_{2} & \ldots & \rho_{1 k} n_{k} \\
\rho_{21} n_{1} & a_{2} & \cdots & \rho_{2 k} n_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{k 1} n_{1} & \rho_{k 2} n_{2} & \cdots & a_{k}
\end{array}\right] .
$$

Corollary 1.7.

Let $M \in \mathcal{R C} C_{n \times m}\left(p_{1}, p_{2}\right)$ and $B_{i j}=b_{i j} I_{n}+b_{i j}^{\prime} J_{n}+b_{i j}^{\prime \prime} M M^{T}, P_{i s}=p_{i s} J_{n \times m}+p_{i s}^{\prime} M, Q_{h j}=$ $q_{h j} J_{m \times n}+q_{h j}^{\prime} M^{T}$ and $C_{h s}=c_{h s} I_{m}+c_{h s}^{\prime} J_{m}+c_{h s}^{\prime \prime} M^{T} M$, where $b_{i j}, b_{i j}^{\prime}, b_{i j}^{\prime \prime}, p_{i s}, p_{i s}^{\prime}, q_{h j}, q_{h j}^{\prime}, c_{h s}, c_{h s}^{\prime}, c_{h s}^{\prime \prime} \in \mathbb{R}$ for $i, j=1,2, \ldots, k_{1} ; h, s=1,2, \ldots, k_{2}$. Let

$$
A=\left[\begin{array}{ll}
B & P \tag{1.8}\\
Q & C
\end{array}\right]
$$

where

$$
\begin{array}{ll}
B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 k_{1}} \\
B_{21} & B_{22} & \cdots & B_{2 k_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
B_{k_{1} 1} & B_{k_{1} 2} & \cdots & B_{k_{1} k_{1}}
\end{array}\right], \quad P=\left[\begin{array}{ccc}
P_{11} & P_{12} & \cdots \\
P_{21} & P_{22} & \cdots \\
\vdots & \vdots & P_{2 k_{2}} \\
P_{k_{1} 1} & P_{k_{1} 2} & \cdots \\
\hline & P_{k_{1} k_{2}}
\end{array}\right], \\
Q=\left[\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 k_{1}} \\
Q_{21} & Q_{22} & \cdots & Q_{2 k_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{k_{2} 1} & Q_{k_{2} 2} & \cdots & Q_{k_{2} k_{1}}
\end{array}\right], \quad C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 k_{2}} \\
C_{21} & C_{22} & \cdots & C_{2 k_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
C_{k_{2} 1} & C_{k_{2} 2} & \cdots & C_{k_{2} k_{2}}
\end{array}\right] .
\end{array}
$$

Let $r=\left\{\begin{array}{l}\operatorname{rank}(M)+1 \text { if } p_{1}=0 \text { or } p_{2}=0 ; \\ \operatorname{rank}(M) \text { otherwise. }\end{array}\right.$
Then

$$
\begin{gathered}
\sigma(A)=\sigma\left(\delta_{A}\right)+(n-r) \sigma\left(B^{\prime}\right)+(m-r) \sigma\left(C^{\prime}\right)+\sum_{0 \neq \lambda_{t} \in \sigma\left(M M^{T}\right) \backslash\left\{p_{1} p_{2}\right\}} \sigma\left(E_{\lambda_{t}}\right), \\
B^{\prime}=\left[b_{i j}\right] \text { for } i, j=1,2, \ldots, k_{1} ; \\
C^{\prime}=\left[c_{i j}\right] \text { for } i, j=1,2, \ldots, k_{2} ;
\end{gathered}
$$

and

$$
E_{\lambda_{t}}=\left[\begin{array}{cc}
E_{1 t} & \lambda_{t} E_{2 t} \\
E_{3 t} & E_{4 t}
\end{array}\right]
$$

with

$$
E_{1 t}=\left[b_{i j}+\lambda_{t} b_{i j}^{\prime \prime}\right], \quad E_{2 t}=\left[p_{i s}^{\prime}\right], \quad E_{3 t}=\left[q_{h j}^{\prime}\right], \quad E_{4 t}=\left[c_{h s}+\lambda_{t} c_{h s}^{\prime \prime}\right],
$$

for all t such that $0 \neq \lambda_{t} \in \sigma\left(M M^{T}\right) \backslash\left\{p_{1} p_{2}\right\} ; i, j=1,2, \ldots, k_{1} ; h, s=1,2, \ldots, k_{2}$.

Example 3

Consider the matrix

$$
A=\left[\begin{array}{ccc|cccc}
3 & -2 & 3 & 1 & -2 & -1 & 2 \\
-2 & 11 & -5 & -3 & 6 & 3 & -6 \\
3 & -5 & 6 & 2 & -4 & -2 & 4 \\
\hline 2 & 2 & 2 & 2 & -3 & -2 & 1 \\
2 & 2 & 2 & -3 & 5 & 1 & -5 \\
2 & 2 & 2 & -2 & 1 & 2 & -3 \\
2 & 2 & 2 & 1 & -5 & -3 & 5
\end{array}\right]
$$

Taking $M=\left[\begin{array}{cccc}1 & -2 & -1 & 2 \\ -3 & 6 & 3 & -6 \\ 2 & -4 & -2 & 4\end{array}\right], A$ can be viewed as

$$
\left[\begin{array}{ll}
B_{11} & P_{11} \\
Q_{11} & C_{11}
\end{array}\right],
$$

where $B_{11}=I_{3}+J_{2}+\frac{1}{10} M M^{T}, P_{11}=M, Q_{11}=2 J_{4 \times 3}$,
$C_{11}=2 I_{4}-J_{4}+\frac{1}{14} M^{\top} M$. Taking $p_{1}=0$ and $\operatorname{rank}(M)=1, r=2$ in Corollary 1.7, we get

$$
\sigma(A)=\sigma\left(\delta_{A}\right)+\sigma\left(E_{\lambda_{t}}\right)+\sigma\left(B^{\prime}\right)+2 \sigma\left(C^{\prime}\right)
$$

where $\delta_{A}=\left[\begin{array}{cc}4 & 0 \\ 6 & -2\end{array}\right], E_{2}=\left[\begin{array}{cc}15 & 140 \\ 0 & 12\end{array}\right], B^{\prime}=[1]$ and $C^{\prime}=[2]$.
Thus $\sigma(A)=\{-2,1,2,2,4,12,15\}$.
Example 4 Consider the matrix

$$
A=\left[\begin{array}{ccc|cccc|cc}
3 & -2 & 3 & 1 & -2 & -1 & 2 & 0 & 0 \\
-2 & 11 & -5 & -3 & 6 & 3 & -6 & 0 & 0 \\
3 & -5 & 6 & 2 & -4 & -2 & 4 & 0 & 0 \\
\hline 2 & 2 & 2 & 2 & -3 & -2 & 1 & -2 & -2 \\
2 & 2 & 2 & -3 & 5 & 1 & -5 & -2 & -2 \\
2 & 2 & 2 & -2 & 1 & 2 & -3 & -2 & -2 \\
2 & 2 & 2 & 1 & -5 & -3 & 5 & -2 & -2 \\
\hline-1 & -1 & -1 & 0 & 0 & 0 & 0 & -1 & 2 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 2 & -1
\end{array}\right] .
$$

Then A can be viewed as

$$
A=\left[\begin{array}{c|c|c}
A_{11}^{(1)} & A_{12}^{(1)} & \mathbf{0} \\
\hline A_{21}^{(1)} & A_{22}^{(1)} & -2 J_{4 \times 2} \\
\hline-J_{2 \times 3} & \mathbf{0} & A_{11}^{(2)}
\end{array}\right],
$$

where $A_{11}^{(1)}, A_{12}^{(1)} A_{21}^{(1)}$ and $A_{22}^{(1)}$ are the blocks of A as mentioned above. Then by using Corollary 1.5, we have

$$
\sigma(A)=\sigma\left(\delta_{A}\right)+\left[\sigma\left(M_{11}\right) \backslash \sigma\left(\delta_{M_{11}}\right)\right]+\left[\sigma\left(M_{22}\right) \backslash \sigma\left(\delta_{M_{22}}\right)\right]
$$

where $\delta_{A}=\left[\begin{array}{ccc}4 & 0 & 0 \\ 6 & -2 & -4 \\ -3 & 0 & 1\end{array}\right], M_{11}=\left[\begin{array}{cc}A_{11}^{(1)} & A_{12}^{(1)} \\ A_{21}^{(1)} & A_{22}^{(1)}\end{array}\right], M_{22}=A_{11}^{(2)}$.
Notice that $\sigma\left(\delta_{A}\right)=\{4,-2,1\}, \sigma\left(M_{22}\right)=\{1,-3\}, \delta\left(M_{22}\right)=[1]$ and by using Example 3, $\sigma\left(M_{11}\right) \backslash \sigma\left(\delta_{M_{11}}\right)=\{1,2,2,12,15\}$.
Thus we have $\sigma(A)=\{4,-2,1,1,2,2,12,15,-3\}$.

Eigenvectors of some partitioned matrices

Let x be an eigenvalue of E_{S} with an eigenvector $Y=\left[\begin{array}{llll}c_{s_{1}} & c_{s_{2}} & \ldots & c_{s_{t}}\end{array}\right]^{T}$. Then we have

$$
E_{S} Y=x Y
$$

From this, we obtain

$$
\begin{equation*}
c_{s_{1}} a_{i s_{1}}+c_{s_{2}} a_{i s_{2}}+\cdots+c_{s_{t}} a_{i s_{t}}=c_{s_{i}} x \tag{1.10}
\end{equation*}
$$

for each $i \in \beta$. Let

$$
Z=\left[\begin{array}{llll}
Z_{1} & Z_{2} & \cdots & Z_{k}
\end{array}\right]^{T}
$$

where $Z_{i}= \begin{cases}c_{i} X_{i} & \text { if } i \in \beta ; \\ 0 & \text { if } i \in \beta^{c} .\end{cases}$
Then by using (1.10) and (1.3), it can be verified that

$$
A Z=x Z
$$

Therefore, Z is an eigenvector of A corresponding to the eigenvalue x.

Construction of eigenvectors of A : We proceed to construct the eigenvectors of A corresponding to the eigenvalues mentioned in Theorem 1.3.
Consider the following matrix equation:

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right]\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{k}
\end{array}\right]=x\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{k}
\end{array}\right]
$$

where

$$
Z_{i}= \begin{cases}c_{i} X_{i} & \text { if } i=s_{1}, s_{2}, \ldots, s_{t-1} \\ X_{s_{t}} & \text { if } i=s_{t} \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

with $c_{i} \in \mathbb{C}$ for $i=1,2, \ldots, k$. Then we have the following system of equations:

$$
\left.\begin{array}{rcc}
c_{s_{1}}\left(x-a_{s_{1} s_{1}}\right)-c_{s_{2}} a_{s_{1} s_{2}}-\cdots-c_{s_{t-1}} a_{s_{1} s_{t-1}}-a_{s_{1} s_{t}}= & 0 \\
-c_{s_{1}} a_{s_{2} s_{1}}+c_{s_{2}}\left(x-a_{s_{2} s_{2}}\right)-\cdots-c_{s_{t-1}} a_{s_{2} s_{t-1}}-a_{s_{2} s_{t}}= & 0 \tag{1.11}\\
-c_{s_{1}} a_{s_{t-1} s_{1}}-c_{s_{2}} a_{s_{t-1} s_{2}}-\cdots+c_{s_{t-1}}\left(x-a_{s_{t-1} s_{t-1}}\right)-a_{s_{t-1} s_{t}}= & 0
\end{array}\right\}
$$

$$
\begin{equation*}
-c_{s_{1}} a_{s_{t} s_{1}}-c_{s_{2}} a_{s_{t} s_{2}}-\cdots-c_{s_{t-1}} a_{s_{t} s_{t-1}}+\left(x-a_{s_{t} s_{t}}\right)=0 \tag{1.12}
\end{equation*}
$$

Notice that, (1.11) can be written as

$$
P C=X,
$$

where

$$
\begin{aligned}
P & =\left[\begin{array}{cccc}
x-a_{s_{1} s_{1}} & -a_{s_{1} s_{2}} & \cdots & -a_{s_{1} s_{t-1}} \\
-a_{s_{2} s_{1}} & x-a_{s_{2} s_{2}} & \cdots & -a_{s_{2} s_{t-1}} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{s_{t-1} s_{1}} & -a_{s_{t-1} s_{2}} & \cdots & x-a_{s_{t-1} s_{t-1}}
\end{array}\right] \\
C & =\left[\begin{array}{llll}
c_{s_{1}} & c_{s_{2}} & \cdots & c_{s_{t-1}}
\end{array}\right]^{T} \\
X & =\left[\begin{array}{llll}
a_{s_{1} s_{t}} & a_{s_{2} s_{t}} & \cdots & a_{s_{t-1} s_{t}}
\end{array}\right]^{T} .
\end{aligned}
$$

Then

$$
\begin{equation*}
C=P^{-1} X \tag{1.13}
\end{equation*}
$$

Let $P_{i j}$ be the co-factor of the (i, j)-th entry of P. Then by (1.13), for each $j=s_{1}, s_{2}, \ldots, s_{t-1}$, we have,

$$
\begin{equation*}
c_{j}=\frac{1}{|P|} \sum_{i=1}^{t} a_{s_{i} s_{t}} P_{j i} \tag{1.14}
\end{equation*}
$$

Substituting the values of $c_{s_{1}}, c_{s_{2}}, \ldots, c_{s_{t-1}}$ in (1.12), we get

$$
\left|x l_{t}-E_{S}\right|=0
$$

It follows that, $\left[\begin{array}{llll}Z_{1} & Z_{2} & \cdots & Z_{k}\end{array}\right]^{T}$ is an eigenvector of A corresponding to the eigenvalue x of E_{S}, where $c_{s_{j}}$ is given in (1.14) for $j=1,2, \ldots, t-1$.

References

[1] L. S. Goddard and H. Schneider, Matrices with nonzero commutator, Proc. Camb. Phil. Soc. 51(551) (1955).
[2] E. V. Haynsworth, Applications of a theorem on partitioned matrices, J. Res. Nat. Bureau Stand. 62(2) (1959) 73-78.
[3] E. V. Haynsworth, A reduction formula for partitioned matrices, J. Res. Nat. Bureau Stand. 64(3) (1960) 171-174
[4] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

Published Paper related to this topic

M. Gayathri and R. Rajkumar, Spectra of partitioned matrices and the M-join of graphs, Ricerche di Matematica (published online), 2021.

